92. Molecular Polarisability. The Apparent Conformations of Thianthren and of Three of its Oxides as Solutes in Benzene.

By M. J. Aroney, R. J. W. Le Fèvre, and J. D. Saxby.

Dipole moments and molar Kerr constants are recorded for thianthren (1.41 D and -182×10^{-12}), α-thianthren dioxide (1.70 D and -195×10^{-12}), β-thianthren dioxide (4.88 D and -1640×10^{-12}), and thianthren tetroxide ($5 \cdot 11 \mathrm{D}$ and -2810×10^{-12}), as solutes in benzene at 25°. The data are interpreted in terms of "equivalent" conformations for these flexible molecules; the apparent angle of fold about the $S-S$ line is, in each case, greater than that reported on the basis of X-ray analysis for the solid-state configuration.
It has been shown that thianthren (I), ${ }^{\mathbf{1 2}} \mathbf{2}$ its two dioxides (II), ${ }^{\mathbf{3 , 4}}$ and its tetroxide (III) ${ }^{\mathbf{5}}$ all have folded structures in the crystal state, the folding being about a line passing through the sulphur atoms. Hosoya ${ }^{6}$ reviewed this work and listed the following dihedral angles: thianthren, $128^{\circ} ; \alpha$-thianthren dioxide, $123^{\circ} ; \beta$-thianthren dioxide, 122°; thianthren

(I)

(II)

(III)
tetroxide, 127°. In the present Paper we interpret the apparent polarities and electric birefringences of these compounds, examined in benzene solutions at 25°, in terms of their average conformations in this state.

Experimental

Materials, Apparatus, etc.-Thianthren had m. p. 158° (from benzene). α-Thianthren dioxide ${ }^{7}$ had m. p. 285° (from glacial acetic acid) (Found: C, 57.9; H, 3.3. Calc. for $\mathrm{C}_{12} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, $58.0 ; \mathrm{H}, 3 \cdot 2 \%$). β-Thianthren dioxide ${ }^{8}$ had m. p. 252° (Found: C, $57.9 ; \mathrm{H}, 3.4 \%$). Thianthren tetroxide ${ }^{9}$ had m. p. ca. 325° (Found: C, $51 \cdot 7 ; \mathrm{H}, \mathbf{3} \cdot 0$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, $51 \cdot 4 ; \mathrm{H}, \mathbf{2} \cdot \mathbf{9} \%$).

Apparatus, techniques, symbols, and methods of calculation have been described before. ${ }^{10,11}$ The quantities $\Delta \varepsilon, \Delta d, \Delta n$, and ΔB are the differences found between the dielectric constants, densities, refractive indexes, and Kerr constants, respectively, of benzene as solvent and of solutions containing weight fractions w_{2} of solute. The following data apply at 25° to benzene: $\varepsilon_{1}=2.2725 ; \quad d_{1}=0.87378 ; \quad\left(n_{1}\right)_{\mathrm{D}}=1.4973 ; \quad 10^{7} B_{1}=0.410 ; \quad 10^{12}{ }_{\mathrm{s}} K_{1}=0.0756 . \quad$ Observations and results are summarised in Tables 1 and 2.

Previous Measurements.-The M.I.T. Tables ${ }^{12}$ list five determinations of the dipole moment of thianthren ranging from 1.41 to 1.7 D . The value 1.41 D , which agrees with the present work, was obtained ${ }^{13}$ in benzene at both 25° and 50° using thianthren which had been

[^0]
Table 1.

Incremental Kerr effects, refractive indexes, dielectric constants, and densities of solutions in benzene at 25°.

Thianthren								
$10^{5} w_{2} \ldots \ldots \ldots .9980 \cdot 2$	$1023 \quad 2032$	2192	3456	3508				
$-10^{7} \Delta B \quad \ldots \quad 0 \cdot 049$	$0.050 \quad 0.094$	40.099	$0 \cdot 155$	$0 \cdot 149$				
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-4.52$.								
$10^{5} w_{2} \ldots \ldots . . .451 \cdot 9$	$777 \cdot 7 \quad 875 \cdot 6$	$6 \quad 980 \cdot 2$	1004	13341528	2032	3022	3456	4045
$10^{4} \Delta n \ldots \ldots \ldots$.	11	14		$20 \quad 24$	30	44	50	60
$\varepsilon^{25} \ldots \ldots \ldots \ldots .2 .2789$	$2 \cdot 2844 \quad 2 \cdot 2859$	9	$2 \cdot 2877$	$2.2924 \quad 2 \cdot 2953$	-		-	
$d_{4}{ }^{25} \ldots \ldots \ldots \ldots .087521$	0.87615	-	-	0.877760 .87829	9	$0 \cdot 88265$	-	0.88577
whence $\Sigma \Delta n / \Sigma w_{2}=0.147 ; ~ \Sigma \Delta \varepsilon / \Sigma w_{2}=1.50 ; ~ \Sigma \Delta d / \Sigma w_{2}=0.297$.								
α-Thianthren dioxide								
$10^{6} r_{2} \quad \dddot{B}$	2400	4378	4468	4856	5381	5657		5805
$-10^{7} \Delta B$	- 0	0.018	$0 \cdot 019$	-	$0 \cdot 021$	$0 \cdot 022$		$0 \cdot 026$
$10^{4} \Delta n$	-	6	6	-	-	8		8
ε^{25}.	2.2773 2	$2 \cdot 2804$	2.2807	$2 \cdot 2799$	2.2821	2.2823		2.2822
$d_{4}{ }^{25}$	$0 \cdot 87461$	-	0.87531	$0.87557 \quad 0$	0.87569	$0 \cdot 87589$		$0 \cdot 87573$

whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-4 \cdot 13 ; \quad \Sigma \Delta n / \Sigma w_{2}=0.138 ; ~ \Sigma \Delta \varepsilon / \Sigma w_{2}=1.74 ; \quad \Sigma \Delta d / \Sigma w_{2}=0.354$.

β-Thianthren dioxide										
$10^{6} w_{2} \ldots \ldots \ldots$	599	1157	1355	1424	1474	1552	1782	2205	2437	2629
$-10^{7} \Delta B \quad \ldots$	-	0.042	--	$0 \cdot 043$	-	-	0.059	-	0.082	0.094
$10^{4} \Delta n \ldots \ldots \ldots$	-	-	-	-	1	-	2	3	4	4
$\varepsilon^{25} \ldots \ldots \ldots \ldots$.	2.2793	-	2.2874	-	$2 \cdot 2883$	$2 \cdot 2888$	$2 \cdot 2927$	$2 \cdot 2965$	-	-
$d_{4}{ }^{25}$	$0 \cdot 87400$	$0 \cdot 87417$	$0 \cdot 87424$	-	0.87430	-	0.87439	$0 \cdot 87458$	-	$0 \cdot 87472$

Thianthren tetroxide						
$10^{6} w_{2}$	356	536	961	1081	1494	1804
$-10^{7} \Delta B$	$0 \cdot 021$	-	$0 \cdot 052$	$0 \cdot 061$	0.072	0.093
$10^{4} \Delta n$	-	-	1	1	-	2
ε^{25}	$2 \cdot 2761$	$2 \cdot 2772$	$2 \cdot 2827$	$2 \cdot 2836$	-	$2 \cdot 2928$
$d_{4}{ }^{25}$	0.87392	0.87402	0.87418	$0 \cdot 87421$	$0 \cdot 87437$	$0 \cdot 87451$

Table 2.
Polarisations, dipole moments, and molar Kerr constants (from observations in benzene at 25°).

Solute	$\alpha \varepsilon_{1}$	β	γ	δ	∞P_{2} (c.c.)	$R_{\text {D }}$ (c.c.)	$\mu(\mathrm{D}) *$	$10^{12}{ }_{\infty}\left({ }_{m} K_{2}\right)$
Thianthren	1.50	$0 \cdot 340$	0.098	-11.0	$109 \cdot 7$	$66 \cdot 0$	$1 \cdot 41$	-182
α-Dioxide	1.74	$0 \cdot 405$	0.092	$-10 \cdot 1$	$131 \cdot 6$	$69 \cdot 1$	$1 \cdot 70$	-195
β-Dioxide	$10 \cdot 9$	$0 \cdot 403$	0.089	-82.7	$559 \cdot 6$	$68 \cdot 6$	$4 \cdot 88$	-1640
Tetroxide	$10 \cdot 5$	$0 \cdot 465$	0.069	-128.0	$604 \cdot 7$	66.9	$5 \cdot 11$	-2810

fractionally crystallised nine times. Other relevant measurements included in these tables are $: \mu(\alpha$-thianthren dioxide $)=1.7 \mathrm{D}$ and $\mu(\beta$-thianthren dioxide $)=4.2 \mathrm{D}$, both of which were determined in benzene solution at $19^{\circ} .{ }^{14}$ The lower melting point of the β-isomer ($\left.246^{\circ}\right)^{14}$ than that found for our product, may explain the discrepancy in the moments. There appear to be no previous estimates of the dipole moment of thianthren tetroxide.

Discussion

The folded configuration of thianthren was first suggested ${ }^{14}$ to account for the dipole moment observed in solution. Later workers ${ }^{15,16}$ tried unsuccessfully to resolve various thianthren derivatives into optically isomeric forms. Keats ${ }^{16}$ concluded that, in solution,

[^1]the thianthren molecule is not rigid but oscillates rapidly through a mean planar position. More recently, the dielectric relaxation time of thianthren in benzene solution at 25° $\left[(2.30 \pm 0.15) \times 10^{-11} \mathrm{sec}\right.$.] has been explained in terms of " enantiomorphic-inverse collapse '" of the molecule. ${ }^{17}$ Chandra ${ }^{18}$ deduced, from an LCAO-MO study of thianthren, that the molecule is folded about the $\mathrm{S}-\mathrm{S}$ axis and that the energy barrier for inversion through the planar form is relatively low ($6-7 \mathrm{kcal} . / \mathrm{mole}$). Thus, available evidence indicates that the thianthren molecule is not rigid in solution but is capable of " flapping " about the line joining the sulphur atoms. It seems reasonable to expect that the oxides of thiantren are also non-rigid. This appears to be borne out by the fact that the second cis-dioxide described by Taylor ${ }^{19}$ has not been isolated despite the stability of the tetroxide. Clearly, both cis-arrangements (cf. ref. 19) would be only two of the conformations contributing to an oscillating system. Hence, the following discussion relates to the " average conformations" of these molecules in the experimental medium.

Dipole Moments.--Theoretical dipole moments for conformations defined by angles of fold ϕ (see Fig. 1) have been calculated for thianthren and its oxides by vector addition of bond and group components. The following parameters have been used: $\mu\left(\mathrm{Ph}_{2} \mathrm{~S}\right)=$ $\mathrm{l} .50 \pm 0.20$ (ref. 20); $\mu\left(\mathrm{Ph}_{2} \mathrm{SO}_{2}\right)=4.97 \pm 0.60$ (ref. 21); $\mu(\mathrm{S}-\mathrm{O})$ for sulphoxides $=$ $3 \cdot 2 \pm 0 \cdot 3$ (refs. 21 and 22); $\angle \mathrm{X}_{1} \mathrm{SX}_{2}=\angle \mathrm{X}_{3} \mathrm{SX}_{4}=123 \pm 8^{\circ}$ (ref. 23). In Fig. 2, for the α-dioxide $\mathrm{X}_{1}=\mathrm{X}_{4}=\mathrm{O}$ and $\mathrm{X}_{2}=\mathrm{X}_{3}=$ lone-pair, for the ρ-dioxide $\mathrm{X}_{1}=\mathrm{X}_{3}=0$ and $X_{2}=X_{4}=$ lone-pair. The relatively large errors have been allowed to take into

Fig. 1.

Fig. 2.
account the effects of possible changes in bond angles and bond orders in the application of these data to the thianthren series. The calculations are summarised in Table 3. The predicted moment of β-thianthren dioxide acts in the $X Z$-plane at an angle α° to the Z-axis; for each of the other compounds the resultant moment is located along the Z-direction. The angle CSC is calculable from ϕ using the relationship $\sin (\angle \mathrm{CSC} / 2)=$ $\sin (\phi / 2) \cos 30$. Comparison of the calculated values with the observed moments of Table 2 leads to the following average angles of fold ($\angle \mathrm{CSC}$ in parentheses): thianthren, $144 \pm 8(111 \pm 4) ; ~ \alpha$-dioxide, $139 \pm 10(108 \pm 5) ; \quad \beta$-dioxide, $130 \pm 10(103 \pm 6) ;$ tetroxide, $140 \pm 8(109 \pm 4)$.

Table 3.
Calculated values of the resultant dipole moments.

ϕ	$\angle \mathrm{CSC}$	μ (thianthren)	$\mu(\alpha$-dioxide)	$\mu(\beta$-dioxide)	α	μ (tetroxide)
180°	120°	0	$5 \cdot 6 \pm 0 \cdot 8$	0	-	0
150	114	1.23 ± 0.2	2.7 ± 0.9	$3 \cdot 4 \pm 0 \cdot 4$	$43 \pm 6^{\circ}$	$4 \cdot 1 \pm 0.5$
140	109	1.53 士 0.2	1.8 ± 0.9	$4 \cdot 2 \pm 0 \cdot 5$	43 ± 6	$5 \cdot 1 \pm 0 \cdot 6$
130	103	1.77 ± 0.2	$1 \cdot 0 \pm 0.9$	$4 \cdot 9 \pm 0 \cdot 6$	43 ± 6	5.9 ± 0.7
120	97	1.96 ± 0.2	0.3 ± 0.9	$5 \cdot 4 \pm 0.7$	43 ± 6	$6 \cdot 5 \pm 0 \cdot 8$
90	75	$2 \cdot 32 \pm 0.3$	$1 \cdot 1 \pm 0 \cdot 9$	$6 \cdot 4 \pm 0 \cdot 8$	43 士 6	$7 \cdot 7 \pm 0 \cdot 9$

Molar Kerr Constants.-Le Fèvre and Le Fèvre ${ }^{11 a}$ reported the molar Kerr constant of thianthren, measured in carbon tetrachloride solution at 20°, as -194×10^{-12}, from which they inferred that, though the molecule is non-planar, the degree of folding cannot

[^2]be considerable otherwise the Kerr constant would be positive. The extent to which inter-ring conjugation occurs in this molecule is not known, so the usual calculations (ref. $11 b, \mathrm{p} .2486$) involving $\mathrm{C}-\mathrm{S}$ bond and $\mathrm{C}_{6} \mathrm{H}_{4}$ group polarisability data derived from dimethyl sulphide ${ }^{20}$ and benzene, ${ }^{24}$ respectively, cannot be accurately applied. Hence, an alternative approach is used initially to specify the polarisability ellipsoid semi-axes of the group $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}$ in thianthren and from such values the theoretical molar Kerr constants are calculated for various angles of fold. Wood and Crackston ${ }^{25}$ measured the principal refractive indexes ($n_{\alpha, \beta, \gamma}$) of crystalline thianthren (see also ref. I), from which can be estimated the corresponding molar refractions (eqn. 1) and thence molecular polarisabilities (eqn. 2) using $d=1.44 \mathrm{~g}$./c.c. (ref. 1) and $M=216.3$.
\[

$$
\begin{align*}
& R=\left(n^{2}-1\right) M /\left(n^{2}+2\right) d \tag{1}\\
& { }_{\mathrm{E}} P=0.95 R=4 \pi \mathrm{~N} b / 3 \tag{2}
\end{align*}
$$
\]

From the location of the molecules in the unit cell ${ }^{1,25}$ we have, to a good approximation,

$$
\begin{align*}
& b_{\alpha}=b_{1} \cos ^{2} 59+b_{3} \cos ^{2} 31 \tag{3}\\
& b_{\beta}=b_{1} \cos ^{2} 31+b_{3} \cos ^{2} 59 \tag{4}\\
& b_{\gamma}=b_{2} \tag{5}
\end{align*}
$$

where b_{1}, b_{2}, and b_{3} are the principal polarisabilities of the thianthren molecule (see Fig. 1). It follows that $b_{1}=2.479 ; \quad b_{2}=2.732 ; b_{3}=1.899 . *$ Lynton and Cox ${ }^{1}$ and Rowe and Post ${ }^{2}$ found that for the crystal state the angle of fold (ϕ) is 128°; hence, $b_{\mathrm{L}}, b_{\mathrm{r}}$, and b_{V}

Fig. 3. for the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}$ group (see Fig. 3) are calculable from equations (6)-(8) as $1.496,1 \cdot 240$, and 0.819 , respectively.

$$
\begin{align*}
& b_{1}=2 b_{\mathrm{T}} \tag{6}\\
& b_{2}=2\left(b_{\mathrm{L}} \cos ^{2} 26+b_{\mathrm{V}} \cos ^{2} 64\right) \tag{7}\\
& b_{3}=2\left(b_{\mathrm{L}} \cos ^{2} 64+b_{\mathrm{V}} \cos ^{2} 26\right) \tag{8}
\end{align*}
$$

From these group polarisabilities can be predicted b_{1}, b_{2}, and b_{3} for any conformation of thianthren defined by a particular value of ϕ, and, by use of the calculated moments of Table 3, the corresponding molar Kerr constant can be found. Comparison of the theoretical values in Table 4 with the experimental molar Kerr constant in benzene $\left(-182 \times 10^{-12}\right)$ indicates that the angle of fold is $c a .140^{\circ}$. The possible error in ϕ, though difficult to predict, can reasonably be taken as $\pm 10^{\circ}$.

Table 4.
Calculated molar Kerr constants of thianthren.

ϕ	b_{1}	b_{2}	b_{3}	$10^{12}{ }_{\mathrm{m}} K$	ϕ	b_{1}	b_{2}	b_{3}	$10^{12}{ }_{\mathrm{m}} K$
180°	2.480	2.992	1.638	$+70 \cdot 1$	130°	2.480	2.750	1.880	-225
150	2.480	2.901	1.729	-108	120	2.480	2.654	1.977	-232
140	2.480	2.834	1.796	-181	90	2.480	2.315	2.315	+50.4

Crystal data similar to those used for thianthren are not available for the three oxides examined. However, for thianthren tetroxide and α-thianthren dioxide, where the molecular symmetry is such that the locations of b_{1}, b_{2}, b_{3}, and μ (resultant) are known, an approximate calculation is possible. It has been shown ${ }^{21,26}$ that for the series sulphide, sulphoxide, and sulphone, $\Sigma b(\mathrm{~S}-\mathrm{O})$ is approximately equal to Σb (lone-pair) so it seems reasonable to assume that the formation of $\mathrm{S}-\mathrm{O}$ bonds (symmetrically) from thianthren will not seriously change the polarisability specifications for a particular conformation of this molecule, as these are governed in most part by the dispositions of the highly polarisable $\mathrm{C}_{6} \mathrm{H}_{4}$ groups. If, then, the b_{1}, b_{2}, b_{3} values of Table 4 are used in conjunction

[^3]with the appropriate moments of Table 3, calculated molar Kerr constants are obtained which agree with the observed values if $\phi=c a .130^{\circ}$ for thianthren tetroxide, and ca. 138° for α-thianthren dioxide. The lower symmetry of the β-dioxide does not allow us to locate with precision the principal polarisability semi-axes or the resultant dipole moment, so that analogous calculations for this molecule would be highly speculative.

Conclusions.-The dipole moment and electric birefringence of thianthren in benzene solution can be analysed in terms of an "equivalent" conformation (having a dihedral angle approximately 142°) which is significantly different from the solid-state configuration (for which $\phi=128^{\circ}$). This appears compatible with the concept of a "flapping" * molecule for which ϕ adopts all values from 180° to less than 128°. However, conformations having $\phi<128^{\circ}$ would be energetically less favourable than those having $\phi>128^{\circ}$ owing predominantly to steric repulsions of the benzene rings. Analogous "equivalent " conformations specified for the α - and the β-dioxide and for the tetroxide of thianthren all have apparent angles of fold greater than those found for the crystal state, which suggests that these molecules, like the parent compound, are flexible in solution.

The award of a Commonwealth Research Scholarship to J. D. S. is gratefully acknowledged.
University of Sydney, N.S.W., Australia.
[Received, March 17th, 1964.]

* The effect of " flapping " on the mean square dipole moment and on the Kerr constant is difficult to estimate without a detailed knowledge of the operative steric, mesomeric, and bond-distortion effects, as well as those arising from solvent-solute interactions. However, it seems reasonable to assume that the probability of occurrence of conformations having ϕ considerably different from 142° is low. A potential barrier of $6-7 \mathrm{kcal} . /$ mole (ref. 18) results in a probability of occurrence less than 2×10^{-5} for the planar form ($\phi=180^{\circ}$), whilst small values of $\phi\left(<128^{\circ}\right)$ would lead to appreciable steric interation between the aromatic ring systems.

[^0]: ${ }^{1}$ Lynton and Cox, J., 1956, 4886.
 ${ }^{2}$ Rowe and Post, Acta Cryst., 1958, 11, 372.
 ${ }^{3}$ Hosoya and Wood, Chem. and Ind., 1957, 1042.
 4 Hosoya, Chem. and Ind., 1958, 159.
 ${ }^{5}$ Hosoya, Chem. and Ind., 1958, 980.
 ${ }^{6}$ Hosoya, Acta Cryst., 1963, 16, 310.
 7 Fries and Vogt, Ber., 1911, 44, 756.
 ${ }^{8}$ Krafft and Lyons, Ber., 1896, 29, 435.
 ${ }^{9}$ Cohen and Skirrow, J., 1899, 889.
 10 Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953.
 ${ }^{11}$ Le Fèvre and Le Fèvre, (a) Rev. Pure Appl. Chem. (Australia), 1955, 5, 261; (b) ch. XXXVI in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience, New York, London, 3rd edn., Vol. 1, p. 2459.

 12 Wesson, " Tables of Electric Dipole Moments," Technology Press, M.I.T., 1948.
 13 Walls and Smyth, J. Chem. Phy's., 1933, 1, 337.

[^1]: ${ }^{14}$ Bergmann and Tschudnovsky, Ber., 1932, 65, B, 457.
 15 Bennett, Lesslie, and Turner, J., 1937, 444.
 ${ }^{16}$ Keats, J., 1937, 1592.

[^2]: ${ }^{17}$ Fischer, Commun. Fac. Sci. Univ. Ankara, 1957, 9, 43.
 ${ }^{18}$ Chandra, Tetrahedron, 1963, 19, 471.
 19 Taylor, J., 1935, 625.
 ${ }^{20}$ Aroney, Le Fèvre, and Saxby, $J ., 1963,1167$.
 ${ }^{21}$ Aroney, Fisher, and Le Fèvre, J., 1963, 4450.
 ${ }^{22}$ Cumper and Walker, Trans. Faraday Soc., 1956, 52, 193.
 ${ }^{23}$ Cumper and Vogel, J., 1959, 3521.

[^3]: * Molecular and group polarisabilities are quoted throughout in 10^{-23} c.c. units.
 ${ }^{24}$ Aroney and Le Fèvre, $J ., 1960,3600$.
 ${ }^{25}$ Wood and Crackston, Phil. Mag., 1941, 31, 62.
 ${ }^{26}$ Price and Gillis, J. Amer. Chcm. Soc., 1953, 75, 4750.

